Machine Learning and AI: Support Vector Machines in Python
Machine Learning and AI: Support Vector Machines in Python - Artificial Intelligence and Data Science Algorithms in Python for Classification and Regression
Support Vector Machines (SVM) are one of the most powerful machine learning models around, and this topic has been one that students have requested ever since I started making courses.
These days, everyone seems to be talking about deep learning, but in fact there was a time when support vector machines were seen as superior to neural networks. One of the things you’ll learn about in this course is that a support vector machine actually is a neural network, and they essentially look identical if you were to draw a diagram.
The toughest obstacle to overcome when you’re learning about support vector machines is that they are very theoretical. This theory very easily scares a lot of people away, and it might feel like learning about support vector machines is beyond your ability. Not so!
In this course, we take a very methodical, step-by-step approach to build up all the theory you need to understand how the SVM really works. We are going to use Logistic Regression as our starting point, which is one of the very first things you learn about as a student of machine learning. So if you want to understand this course, just have a good intuition about Logistic Regression, and by extension have a good understanding of the geometry of lines, planes, and hyperplanes.
What you'll learn
- Apply SVMs to practical applications: image recognition, spam detection, medical diagnosis, and regression analysis
- Understand the theory behind SVMs from scratch (basic geometry)
- Use Lagrangian Duality to derive the Kernel SVM
- Understand how Quadratic Programming is applied to SVM
- Support Vector Regression
- Polynomial Kernel, Gaussian Kernel, and Sigmoid Kernel
- Build your own RBF Network and other Neural Networks based on SVM
PREVIEW THIS COURSE - GET COUPON CODE